Urology Challenges in Infants with Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)

Dr. Castellan Miguel

Nicklaus Children Hospital, Miami, Fl.,
Joe DiMaggio Children’s Hospital, Hollywood, Fl.
Jackson Memorial Hospital, University of Miami,
Miami, Fl., USA
Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)

• Constitute approximately 20-30% of all anomalies identified in the prenatal period

• Play a causative role in 30 to 50 percent of cases of end-stage renal disease (ESRD) in children

Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)

• Defects can be unilateral or bilateral and different defects often coexist in an individual child

• Patients with a reduction in kidney numbers or size are most likely to have a poor renal prognosis

CAKUT and ESRD

• Important to diagnose these anomalies early and initiate therapy to minimize renal damage

• Prevent or delay the onset of ESRD, and provide supportive care to avoid complications of ESRD

Sanna-Cherchi Set al. Kidney Int 2009; 76:528
Prenatal US: Urinary Tract Anomalies

• Urologic abnormalities: in up to 1.5% of all pregnancies

• At least 50% represent some form of hydronephrosis

• Prenatal US has completely changed the face of pediatric urology/nephrology practice

Prenatal Hydronephrosis

• In most cases, fetal renal pelvic dilation is a transient physiologic state

• Excessive concern may lead to unnecessary testing of the newborn infant and anxiety for parents and health care providers
Prenatal Hydronephrosis

• However, congenital anomalies of the kidney and urinary tract (CAKUT) can present with fetal hydronephrosis

• Goal: to detect cases that may affect the health and require antenatal and postnatal evaluation and management
Prenatal Hydronephrosis: Causes

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient hydronephrosis of fetal development</td>
<td>41–88</td>
</tr>
<tr>
<td>Ureteropelvic junction obstruction</td>
<td>10–30</td>
</tr>
<tr>
<td>Vesicoureteral reflux</td>
<td>10–20</td>
</tr>
<tr>
<td>Ureterovesical junction obstruction</td>
<td>5–10</td>
</tr>
<tr>
<td>Duplex collecting system</td>
<td>5–7</td>
</tr>
<tr>
<td>Posterior urethral valves</td>
<td>4–6</td>
</tr>
</tbody>
</table>

Prenatal US: Diagnosis

• How do we deal with the large number of prenatally detected urinary tract abnormalities?

• How do we selectively evaluate them perinatally?

• How do we avoid over-testing, without under-testing those who may benefit?
Renal pelvic diameter (RPD): method to define and grade fetal hydronephrosis (maximum AP diameter of the renal pelvis)

<table>
<thead>
<tr>
<th>Classification of Prenatal Hydronephrosis</th>
<th>Second Trimester APD (mm)</th>
<th>Third Trimester APD (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>4-7</td>
<td>7-9</td>
</tr>
<tr>
<td>Moderate</td>
<td>7-10</td>
<td>9-15</td>
</tr>
<tr>
<td>Severe</td>
<td>>10</td>
<td>>15</td>
</tr>
</tbody>
</table>

Grading Prenatal Hydronephrosis

SFU

Guidelines – sort of...

An attempt to permit a more consistent communication about prenatal hydronephrosis
UTD Grading: Prenatal

- 16-27 wks: AP RPD ≥ 7 mm
- ≥ 28 wks: AP RPD ≥ 10 mm

- Peripheral calyceal dilation*
- Parenchymal thickness abnl
- Parenchymal appearance abnl
- Ureters abnormal
- Bladder abnormal
- Unexplained oligohydramnios**

UTD A2-3: INCREASED RISK
Postnatal Management

- APRPD > 15mm
- Peripheral calyceal dilation
- Parenchymal thickness normal
- Parenchymal appearance normal
- Ureters abnormal
- Bladder normal

UTD P2: INTERMEDIATE RISK

FOLLOW UP US:
1 to 3 months
VCUG:
Discretion of clinician
ANTIBIOTICS:
Discretion of clinician
FUNCTIONAL SCAN:
Discretion of clinician
Prenatal Hydronephrosis

• UPJO increased in frequency with severity of hydronephrosis

• In contrast, VUR was not associated with the severity of fetal hydronephrosis

• However, moderate to severe reflux (grades III through V) appears to be associated with a greater degree of renal pelvic dilation (RPD >10 mm) and ureter, both in utero and postnatally

Correlation of degree of hydronephrosis with postnatal outcomes – meta-analysis

from Lee et al., Pediatrics 2006, 118(2):586
Postnatal longitudinal evaluation of children with prenatal hydronephrosis

• 1034 charts of fetuses with PNH

• At last follow-up (mean age 20.6 months), hydronephrosis persisted in children with:
 • Mild: 10%
 • Moderate: 24%
 • Severe: 63%

Risk for CAKUT and Postnatal Surgical Intervention with Increasing Severity of Fetal Hydronephrosis

- Meta-analysis of 1678 infants from 17 studies:
 - **Mild hydronephrosis**: ($\leq 7 \text{ mm in 2}\text{nd and/or } \leq 9 \text{ mm in 3}\text{rd}$): **12 %**
 - **Moderate**: (7-10 mm in 2\text{nd} / 9-15 mm in the 3\text{rd} third trimester): **45 %**
 - **Severe**: (>10 mm in 2\text{nd} / >15 mm in 3\text{rd} third trimester): **88 percent**

Ureterocele: Prenatal detection

- Duplex system with upper pole hydronephrosis
- Hydroureter
- Intravesical cystic structure

Ureteroceles can cause bladder outlet obstruction if closely located to the urethra
How should we evaluate obstruction?

• When hydronephrosis is severe (SFU 3-4), functional testing (MAG 3 renal scan) should be used.
Severe unilateral UPJO

Need for surgery: Ultrasound dilation of pelvis predicts functional decline - Dhillon, 1997
Ultrasound evaluation of hydronephrosis

- Calyceal dilation may be best indicator of severity

- “Thinning” of parenchyma may reflect only dilation

- Extra-renal pelvis may look more severe than it is functionally
Serial MAG-3 scans for UPJO

Age: 2 months

Differential uptake
Left: 61%
Right: 39%

T ½ minutes
Left: <3
Right: 11.5

Age: 7.5 months

Differential uptake
Left: 68%
Right: 32%

T ½ minutes
Left: 9
Right: 26

“Function”: 39% to 32%

Washout time (t ½): 11.5 min to 26 min
Observation of infants with SFU 3-4 hydronephrosis
Ross, et al., 2011, J Ped Urol 7:266-71

• 115 pts (125 kidneys) / Overall operative rate of 38%
• Delayed surgery in 21 (21%) at mean of 500 days, 3 showed < DRF
• Cost of multiple studies / Limited F/U in some patients
Management for UPJO (SFU gr. 3-4 hydronephrosis)

- If US confirms moderately severe dilation: MAG3
- If function >45% and washout < than 30 min – repeat US at 4-6 ms
- Repeat MAG3 at 6-12 months - re-assess “function”
Initial Evaluation of prenatally detected hydronephrosis

From Swords and Peters, Arch Dis Child Fetal Neonatal Ed 2015; 100:F460-64
Isolated Fetal Hydronephrosis:
The Every-day Question

• Should we screen for vesicoureteral reflux?
Isolated Fetal Hydronephrosis:
Incidence of Reflux

In the context of prenatal hydronephrosis, VUR is present in a significant number of patients

- Arena, et al. (2001): 382 pts - VUR in 68 (17.8%)
- Brophy, et al. (2002): 234 pts - VUR in 40 (17.1%)
Isolated Fetal Hydronephrosis: Screening for Reflux

• Benefits of screening:
 ✓ identify those patients with reflux before they have an infection and damage their kidneys

• Burden of screening:
 ✓ we may identify patients with low grade reflux with little risk of renal injury and therefore over-test
Is this Reflux Clinically Important?

• Ismaili, et al. (2002): 264 infants with prenatal hydro
 • Had 2 neonatal US images
 • If both normal (74), VCUG abnormal in 5 (6.7%)
 • Can select low risk population with post-natal imaging
Not screening for Reflux

• If a VCUG is not to be obtained, the family should be made aware of the clinical signs and symptoms of UTI

• A follow-up US is useful to assess renal growth and ensure the child has been well

• The chance of missing significant reflux is small (postnatal SFU 1-2)
Amniotic fluid (AF)

- Fetal urine becomes significant at the start of the second trimester

- By 20 weeks gestation, fetal urine accounts for > than 90 % of the amniotic fluid volume

- Oligohydramnios at or beyond 20 week of gestation is consistent with a decreased production of fetal urine and CAKUT

Fetal LUTO

Three main diagnoses:

• Posterior urethral valves (PUV)
• Urethral atresia
• Prune belly syndrome

• Other: anterior urethral valves, megalourethra, megacystis-microcolon-hyperparastalsis syndrome, cloacal malformations, and prolapsing cecoureterocele

Anumba et al, 2005 / Heihhila et al 2011
PUV

• Most common cause of LUTO (approx. 1/8000 live male births)

• Up to 28% of boys with PUV maintain a lifetime risk for ESRD

Prenatal US: PUV

• PUV: most common cause of bilateral hydronephrosis in males

• Fetal US:
 - Distended bladder, thickened detrusor, posterior urethral dilatation (key hole sign)
 - Oligohydramnios
 - Severe hydroureteronephrosis (renal cysts)
• Severe cases, mortality up to 45%

• Postnatal: severe morbidity and mortality, independent of treatment type
Prenatal Intervention

Vesicoamniotic shunt placement

- Overwhelmingly, VAS placement is the most common procedure with the largest dataset to analyze.
VAS: Lung Hypoplasia

- AF levels are critical for proper lung development during the canalicular phase (between weeks 16 and 24)
- Most severe fetal complication and cause of perinatal mortality
- VAS: ameliorate pulmonary hypoplasia

Smith LJ. Paediatr Respir Rev. 2010;11(3):135–42
Prenatal VAS (PLUTO)

- Randomised women (UK, Ireland, and Netherlands) whose pregnancies were complicated by LUTO

- Randomly assigned to receive either the intervention (VAS) or conservative management.

31 women (16 VAS – 15 CM)

- Survived to 28 days:
 - **VAS**: 8/16 (50%)
 - **Conservative management**: 4/15 (26.5%) (intention-to-treat relative risk [RR] 1.88, 95% CI 0.71–4.96; p=0.27)

- All deaths were caused by pulmonary hypoplasia

Overall outlook in both trial groups at 2 years was poor (only 2 babies surviving without renal impairment)

VAS improves perinatal survival (long-term renal function was poor)

(Morris et al, Lancet 2013; 382: 1496–506)
Prenatal Intervention: Results

• Updated meta-analysis (2017): 112 fetuses with VAS - 134 treated conservatively

• VAS improved perinatal survival (from birth up to 6 months of age) (57% VAS v. 39% conservative treatment)

• 2-year renal function outcomes, VAS placement did not improve postnatal renal function

Prenatal VAS
(Univ. Miami – Jackson Memorial Hospital)

Prenatal renal parenchymal area as a predictor of early end-stage renal disease in children with vesicoamniotic shunting for lower urinary tract obstruction.

• Retrospective study of 15 male fetuses (01/2009 and 12/2015) with LUTO who survived VAS placement

• Diagnoses included: PUV (8), PBS (4), urethral atresia (2), and megacystis microcolon intestinal hypoperistalsis syndrome (1)
Prenatal Renal Parenchyma area

• Analyze renal parenchymal area (RPA) in fetuses with LUTO and, its use as a predictor of postnatal renal function

• Shunts were placed at 21.39 ± 3.58 weeks of gestation

Prenatal Renal Parenchyma area

- Patients were divided into 2 groups according to renal function in the last follow-up:
 - **Group 1**, ESRD: 8 patients (53.3%)
 - **Group 2**, non-ESRD: 7 patients (46.7%)

Prenatal Renal Parenchyma area

Prenatal US of a 22wk fetus with LUTO before VAS placement

A) Total renal area measurement (cm²) B) Area of hydronephrosis (cm²)

Mean Renal parenchyma area was significantly smaller in patients with ESRD (p<0.05)

Even with early VAS, postnatal morbidity remain high, emphasizing role of renal dysplasia, in postnatal renal failure.

Prenatal RPA measurement could have an important role as a non-invasive tool to predict postnatal renal function.
Prenatal VAS: Conclusions

• From SRs and data from PLUTO trial, VAS increase early survival rates in patients with an initial poor prognosis

• Interventions do not have significant benefit on renal function

• “Renal Dysplasia”, insult is too early and led to postnatal renal failure
Postnatal management
PUV – Endoscopic valve ablation

- Cystoscopy: 6.5 - 7.5 - 9-Fr.
 - Laser Fiber
 - Bugbee Electrode
 - Resectoscope 9.5-Fr with Collins knife

WOLF 4.5 Fr (6.5)
SHORT URETEROSCOPE
110MM WL, 3 FR WC
PUV – Endoscopic Valve Resection
Goal

• Evaluate efficacy of PUV resection during early postnatal period

• Compare results between premature/low weight babies and term neonates
• 2004 - 2015, 130 patients underwent endoscopic PUV resection

• 44 neonates (< 28 days), divided in 2 groups:
 • Group 1 (n=25): premature (<37 wks) / low weight (<2.5 Kg)
 • Grupo 2 (n=19): term / weight >2.5 Kg
PUV Endoscopic Resection in Neonates

Results

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age surgery (days)</td>
<td>7</td>
<td>7</td>
<td>0.910</td>
</tr>
<tr>
<td>Time to follow up (months)</td>
<td>71.4 ± 39.1</td>
<td>57.6 ± 34.2</td>
<td>0.230</td>
</tr>
<tr>
<td>Initial mean serum Cr (mg/dL)</td>
<td>2.19 ± 1.53</td>
<td>1.1 ± 0.62</td>
<td>0.004</td>
</tr>
<tr>
<td>Initial mean eGFR (mL/min per 1.73m²)</td>
<td>11.4 ± 7.4</td>
<td>23.7 ± 15.1</td>
<td>0.003</td>
</tr>
<tr>
<td>Follow-up nadir Cr (mg/dL)</td>
<td>1.18 ± 1.31</td>
<td>0.50 ± 0.45</td>
<td>0.030</td>
</tr>
<tr>
<td>eGFR at last follow-up (mL/min per 1.73m²)</td>
<td>78.1 ± 52.3</td>
<td>118.2 ± 54.3</td>
<td>0.020</td>
</tr>
</tbody>
</table>

Podium Presentation, Fall Meeting SPU, Montreal, September 2017
Elevated serum creatinine in Group 1

No other significant differences between the 2 groups (RVU, hydronephrosis, redo valves resection, urethral stenosis)
Conclusion

• PUV resection is a safe and effective surgical option in premature and low weight babies

• Preterm/Low birth weights boys had a worse initial and 1 year renal function when compared with term neonates
Observations

• The major value of prenatal diagnosis is education for the expectant parent

• Perinatal decision-making should be based upon postnatal clinical outcomes

• CAKUT: Identify those patients at risk for renal injury, develop prevention strategies, and intervene when appropriate
Thanks...

Miguel Castellan, MD

Nicklaus Miami Children's Hospital,
Joe Di Maggio Children's Hospital
Jackson Memorial Hospital,
University of Miami,
Miami, Fl., USA