CRRT

Indications and Applications in Pediatrics

Kelli Walker, ARNP, MSN
Intensive Care Therapy Specialist
Gambro Renal Products
Objectives

Patient characteristics and considerations

Indications and Goals for Acute Renal Replacement Therapy

Timing and Early Indications for Treatment Initiation

Continuous Renal Replacement Modalities

Prescription Parameters and Dosing

Access Management

Holistic and Interdisciplinary Care
AKI: Pediatric Considerations

Population
- Age, Weight, & BSA
- Challenges

Primary conditions
- Congenital heart disease
- Inborn errors of metabolism
- Sepsis with multi-organ involvement
- Bone marrow and solid organ transplantation

Children develop MODS early in ICU course
- Maximum number of organ failures occurs within 72 hours of ICU admission (87% of patients)

Children die with MODS very early in ICU course
- 88.4% of deaths occur within 7 days of MOSF diagnosis

Epidemiology

Pediatric ARF Causes

Emerging Indications

Fluid Overload: Hypervolemia with respiratory involvement or failure

Metabolic Acidosis and Electrolyte imbalance

Acuity/Degree of Kidney Injury
- reduction in GFR and elevated creatinine
- reduction in urine output

Uremia and Multiple Organ Failure

Intoxications, Inborn errors of Metabolism (IEM), Sepsis

Nutritional support

Walters et al. Peds Neph 2008
Timing and Intervention

*pRIFLE criteria: a new validated criteria of AKI to help identify pediatric patients at risk for ARF and to promote early intervention

*Fluid Overload: Independent risk factor associated with mortality

*Uremia: Adult data supports early initiation (BUN <= 60 mg/dL)
pRIFLE: Pediatric Modified RIFLE--definition

GFR per Schwartz equation: $\text{GFR} = \frac{\text{Ht (cm)} \times \text{constant}}{\text{serum creat (mg/dl)}}$

<table>
<thead>
<tr>
<th>Stage</th>
<th>Criteria</th>
<th>Urine Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>GFR decrease by 25%</td>
<td><0.5 ml/kg/hour for 8 hours</td>
</tr>
<tr>
<td>Injury</td>
<td>GFR decrease by 50%</td>
<td><0.5 ml/kg/hour for 16 hours</td>
</tr>
<tr>
<td>Failure</td>
<td>GFR decrease by 75% or $\text{GFR} < 35 \text{ml/min/1.73m}^2$</td>
<td><0.3 ml/kg/hour for 24 hours or anuric for 12 hours</td>
</tr>
<tr>
<td>Loss</td>
<td>Persistent ARF > 4 weeks</td>
<td></td>
</tr>
<tr>
<td>End stage</td>
<td>End Stage Renal Disease (>3 months)</td>
<td></td>
</tr>
</tbody>
</table>

Timing: Fluid Overload as Early Indicator

Percent Fluid Overload Calculation

\[
\text{% FO at CVVH initiation} = \left[\frac{\text{Fluid In} - \text{Fluid Out}}{\text{ICU Admit Weight}} \right] \times 100\%
\]

Fluid In = Total Input from ICU admit to CRRT initiation
Fluid Out = Total Output from ICU admit to CRRT initiation

Pediatrics 2001;107;1309-1312
Effects of different doses in CVVH on outcome of ARF - Ronco & Bellomo study. Lancet. July 00

Effect of BUN at CVVH Initiation on Survival

- Survivors
- Non Survivors

Blood Urea Nitrogen (mg/dl)

- p < 0.01
- p < 0.01
- p < 0.01

Group 1
Group 2
Group 3
Clinical Application

Pediatrics
Continuous Renal Replacement Therapy (CRRT)

“Any extracorporeal blood purification therapy intended to substitute for impaired renal function over an extended period of time and applied for or aimed at being applied for 24 hours/day.”

Why CRRT?

CRRT closely mimics the native kidney in treating ARF and fluid overload

- Removes large amounts of fluid and waste products over time
- Tolerated well by hemodynamically unstable patients
- Slow, gentle and well tolerated by hypotensive patients
CRRT Defined

SCUF - Slow Continuous Ultrafiltration

CVVH - Continuous Veno-Venous Hemofiltration

CVVHD - Continuous Veno-Venous Hemodialysis

CVVHDF - Continuous Veno-Venous HemoDialfiltration
CRRT Modalities

SCUF

CVVH

CVVHD

CVVHDF
Molecular Weights

- **Daltons**

 - 100,000
 - Albumin (55,000 - 60,000)
 - Inflammatory Mediators (1,200-40,000)
 - 50,000
 - Myoglobin (17,800)
 - Beta 2 Microglobulin (11,800)
 - Inulin (5,200)
 - 10,000
 - Vitamin B12 (1,355)
 - Aluminium/Desferoxamine Complex (700)
 - 1,000
 - Glucose (180)
 - Uric Acid (168)
 - Creatinine (113)
 - Phosphate (80)
 - 100
 - Urea (60)
 - Potassium (35)
 - Phosphorus (31)
 - Sodium (23)

- **“large”**
- **“middle”**
- **“small”**
Clearance profiles by modality

INDEXED TOXIN CLEARANCE

Hemodialysis

HEMOFILTRATION

Natural Kidney

MOLECULAR SIZE

Urea (small molecule)

β2-m (Middle molecule)

Albumin (large molecule)
Pediatric Prescription Parameters

Hemofilter Membrane: M10, M60, M100, HF1000

Priming Methods: Bypass, Recirculation, 1:1 PRBC / 5% Albumin

Blood Flow Rate (BFR) = 4 - 10 ml/kg/min

Werner et al., 1994, Critical Care Medicine, 22, 320-325

Dose: Dialysate and Replacement Rates

2000ml per 1.73m²/hour equates to Roncos 35ml/kg/hour

Ultrafiltration Rate (UFR) = 1 – 2 ml/kg/hour

Donckerwolke –Ped Neph 8:103-106, 1994

Anticoagulation: Heparin, Citrate,
Access Management

Size and location need to be considered!

Options: Internal Jugular, Femoral, Subclavian

Vessel diameter vs. age

Patent Access = Optimal outcomes

<table>
<thead>
<tr>
<th>PATIENT SIZE</th>
<th>CATHETER SIZE & SOURCE</th>
<th>SITE OF INSERTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEONATE</td>
<td>Single-lumen 5 Fr (COOK)</td>
<td>Femoral artery or vein</td>
</tr>
<tr>
<td></td>
<td>Dual-Lumen 7.0 French (COOK/MEDCOMP)</td>
<td>Femoral vein</td>
</tr>
<tr>
<td>3-6 KG</td>
<td>Dual-Lumen 7.0 French (COOK/MEDCOMP)</td>
<td>Internal/External-Jugular, Subclavian or Femoral vein</td>
</tr>
<tr>
<td></td>
<td>Triple-Lumen 7.0 Fr (MEDCOMP)</td>
<td>Internal/External-Jugular, Subclavian or Femoral vein</td>
</tr>
<tr>
<td>6-30 KG</td>
<td>Dual-Lumen 8.0 French (KENDALL/ARROW)</td>
<td>Internal/External-Jugular, Subclavian or Femoral vein</td>
</tr>
<tr>
<td>>15-KG</td>
<td>Dual-Lumen 9.0 French (MEDCOMP)</td>
<td>Internal/External-Jugular, Subclavian or Femoral vein</td>
</tr>
<tr>
<td>>30 KG</td>
<td>Dual-Lumen 10.0 French (KENDALL, ARROW)</td>
<td>Internal/External-Jugular, Subclavian or Femoral vein</td>
</tr>
<tr>
<td>>30 KG</td>
<td>Triple-Lumen 12 French (KENDALL/ARROW)</td>
<td>Internal/External-Jugular, Subclavian or Femoral vein</td>
</tr>
</tbody>
</table>
Simplicity is Key!

To enhance Safety and Level of Comfortability at the bedside
References and Resources:

1. Pediatric Speakers’ Bureau

2. Prisma/PrismaFlex Operator Manual

3. www.pcrrt.com

4. www.pediatricnephrology.com

5. www.ADQI.com
Thank you.....

Questions welcome for seminar discussion