The Importance of Clinical Trials: Changing the Face of Sickle Cell Disease

Daniel Armstrong, Ph.D.
Mailman Center for Child Development
Batchelor Children’s Research Institute
Department of Pediatrics
University of Miami Sickle Cell Center
University of Miami Miller School of Medicine
And
Holtz Children’s Hospital at UM/Jackson Memorial Medical Center
Sickle Cell Disease: Background

- Hemoglobinopathy (HbS) affecting 1 in 800 Black babies born in the United States
- Newborn screening detects approximately 2000 new cases each year
- Most common variants are HbSS, HbSβ-thal, HbSβ0, and HbSC
- Carriers (HbS-trait-FAS, FAC, FAE) are assumed asymptomatic; ratio of trait to SCD is 50:1
Sickle Cell Pathophysiology

- Vaso-occlusion can occur in any organ in the body
- Commonly affected organs include:
 - Spleen
 - Brain
 - Bone Marrow
 - Retina
 - Lungs
 - Kidney
 - Skin
The Story of Sickle Cell Disease

- 1910: Dr. James Herrick and his intern, Ernest Irons, described and linked clinical symptoms to abnormal hemoglobin, termed sickle cell anemia (in 1922)

- First patient: Walter Clement Noel, a 20 year old dental student from Granada studying at the University of Chicago
Sickle Cell Disease: Basic Research

Understanding of the genetics of sickle cell disease advanced from 1910 until the early 1980s, but no significant clinical advances

1910: Herrick provides description of sickle cells in symptomatic patient

1927: Hahn & Gillespie associate sickling with low oxygen concentration

1949: Linus Pauling publish: *Sickle Cell Anemia: A Molecular Disease in Science*. Cause of disease associated with change in protein structure

1956: Ingram & Hunt sequence hemoglobin and discover that the change of a single amino acid in protein sequence is cause of SCA

1978: Flavel prepares maps of the human beta and delta globin genes
Sickle Cell Research: A Brief History
The Comprehensive Sickle Cell Centers

- 1972: NIH/NHLBI established the Comprehensive Sickle Cell Centers (CSCC)
 - Presidential Initiative & Congressional mandate
 - NHLBI Sickle Cell Disease Advisory Committee mandated
 - Emphasis on
 - Basic research
 - Clinical care and research
 - Patient and Community Outreach
Finally: Clinical Studies with Patients

1982: Clinical Advances Start to Emerge

1982: Clinical observation of increase mortality due to overwhelming sepsis in children under 4 led to PROPS study (prophylactic penicillin). Study stopped early and prophylactic penicillin became the standard of care.

1984: Accidental cure discovered as child with SCA treated for leukemia with bone marrow transplant is cured of SCA

1985: Multicenter Study of Hydroxyurea stopped early because of clear benefits of HU for pain in adults with SCA

1995: Multicenter Study of Hydroxyurea stopped early because of clear benefits of HU for pain in adults with SCA

1996: CSSCD and STOP trials show 17% incidence of silent cerebral infarct and association between elevated cerebral vascular flow rate and stroke in children; chronic transfusion trial stopped early, became standard of care

2010: Chronic anemia linked to neurocognitive impairment in adults with SCD; transfusion trial started

2011: BABY HUG Trial Completed- hydroxyurea safe and demonstrates clinical significance for pain and other clinical symptoms in infants and toddlers
Sickle Cell Research: A Brief History
Outside the Centers

- Comprehensive Study of Sickle Cell Disease (CSSCD)
 - 1978-1998
 - 709 infants enrolled in natural history study
 - 1988: Brain Study started
 - 1994: Kidney, Psychosocial, MRA emphasized
 - CSSCD fundamentally changed understanding of critical clinical issues in SCD
 - Stroke and stroke onset
 - Mortality
 - Disease Severity
 - Pulmonary Issues
Cognitive Functioning in Children with Sickle Cell Disease
Cooperative Study of Sickle Cell Disease

1983: PROPS, PROPS II

- NHLBI funded multi-center study of prophylactic penicillin
- Stopped early because of definitive outcomes
- *Established prophylaxis as standard of care and led to SCD specific guidelines for later immunizations*
Stroke Prevention Trial in Sickle Cell Anemia (STOP)

- Multicenter study of Transcranial Doppler Ultrasonography (TCD) of cerebral arteries to predict stroke risk
- Children with vascular flow rates >200cm/sec randomized to chronic transfusion/no transfusion
- *Study stopped early because transfusion prevented subsequent stroke; Established TCD screening as standard of care.*
- *STOP II: Found transfusion must be continued*
Hydroxyurea

- Initially used in treatment of chronic leukemia
- Can lower WBC, needs to be monitored
- Mechanism: Hydroxyurea stimulates the production of Hemoglobin F (HbF), therefore reducing the concentration of HbS and the likelihood of sickling
Sickle Cell Research: A Brief History
Outside the Centers

- Multi-center Study of Hydroxyurea (MSH)
 - Opened in 1997
 - Adults with HbSS, ages 18-50 with at least 3 ED or hospitalizations for pain
 - Mechanism in SCD is increase in fetal hemoglobin (HbF) production that reduces HbS concentration and propensity to sickling
 - Study stopped prematurely because of significant results, established standard of care for prevention of pain in adolescents & adults
Sickle Cell Research: A Brief History Outside the Centers

Hydroxyurea Safety and Organ Toxicity

[HUSOFT] trial

- 21 infants in multi-center trial using liquid hydroxyurea
- Follow-up from 4 to 6 years
- Infants with SCA tolerate prolonged hydroxyurea therapy with sustained hematologic benefits, fewer ACS events, improved growth, and possibly preserved organ function.
- Established safety data for initiation of Baby HUG.
2001: Baby HUG

- Multi-center study of 200 infants (9-18 mos old at enrollment) randomized to hydroxyurea or placebo
- Primary outcomes: liver and splenic function
- Secondary: Neurodevelopment
- Results 2011: HU safe, had significant clinical benefits (Wang et al, The Lancet, 2011)
Sickle Cell Research: Ongoing Studies

Stroke With Transfusions Changing to Hydroxyurea (SWiTCH)
- Multi-center, randomized cross-over clinical trial
- 130 children 6-18 years with infarct treated with transfusion for at least 18 months

Outcomes
- Secondary stroke
- Management of iron overload
- Neurodevelopment
- Quality of life
Sickle Cell Research: Ongoing Studies

- Silent Infarction Transfusion Trial (SITT)
 - Multi-center, international study of chronic transfusion and prevention of silent infarct

- Neuropsychologic Function and Imaging in Adults with Sickle Cell Disease: A Pilot Transfusion Study
 - Multi-center study of 140 adults with HbSS (25-40 years old) with no history of neurologic disease who have hemoglobin < 9 gms
 - Significant differences with community controls on IQ
 - Cognitive function significantly associated with anemia
Hematopoietic Stem Cell Transplantation in Sickle Cell Disease

- Bone Marrow Transplant Clinical Research Network (BMT-CRN) established 2001
 - HSCT is the only known cure for SCD
 - Full and mixed chimerism approaches underway
 - 10% procedure-related mortality
 - Limited to patients with significant clinical conditions (e.g., stroke, repeated ACS)

- Sickle Cell Unrelated Transplant (SCURT)
 - Multi-center trial using unrelated donors to begin in 2009
Translation of Research to Clinical Practice: A Summary of Highlights

- Prevention of overwhelming bacterial sepsis through prophylaxis and immunization (PROPS)
- TCD Screening of Infants and Toddlers (STOP)
- Hydroxyurea for prevention of pain and other symptoms (MSH, HUSOFT)
- Oral chelators used to prevent iron overload
Sickle Cell Disease: Policy from Science

- Newborn screening legislation enacted in all 50 states, new standards of care
 - Prophylactic penicillin
 - Transcranial Dopper ultrasonography
 - Vaccinations for H-flu standard
Sickle Cell Disease: Policy from Science

- Quality-of-Care Indicators for Children With Sickle Cell Disease (Wang et al, 2011, Pediatrics)
 - Expert panel produces evidence-based quality of care indicators for treatment of children with sickle cell disease world wide
With All This Research, Where Are We?

- Management of acute pain has not changed substantially in more than a half century.
- Low incidence problems (e.g., leg ulcers, kidney disease, retinal disease) have seen no significant advances.
- Although more than 50% of children with SCA have neurocognitive deficits related to vascular, hypoxic, anemic, or pulmonary challenges, very few are identified for special services in the schools.
Why the Disconnect?

- While all 50 states have mandatory newborn screening for SCD, only a few have effective follow-up programs
- The Comprehensive Sickle Cell Centers provided outstanding service, but there were only 10 and they have not been geographically located near SCD population centers
- The Clinical Research Network only added 4 new centers to the CSCC network
Addressing the Clinical and Translational Research Needs in SCD is not Easy!

- Pediatric and adult emphases are different
 - Prevention vs. acute and chronic care focus
 - Underlying clinical infrastructure differs for children and adults
 - Adults over 21 often cannot be admitted to children’s hospitals
 - Severe and growing shortage of medicine hematologists

- Clinical revenue doesn’t sustain the clinical enterprise
Addressing the Clinical and Translational Research Needs in SCD is not Easy!

- Today, basic science supporting clinical and translational research in SCD is minimal
 - NIH budget for SCD-related basic research is substantially smaller than for other low incidence diseases
 - Pharmaceutical industry development of new orphan drugs has not been a priority, but that is changing
Addressing the Clinical and Translational Research Needs in SCD is not Easy!

- Numerous scientific clinical research challenges
 - Multiple organ involvement requires participation by many specialties that have not historically worked together
 - Clinical focus shifts across the lifespan
 - Meaningful endpoints of some clinical trials may take decades to determine
Addressing Clinical and Translational Research Needs in SCD is not Easy!

- Participant Concerns
 - Geographic access to a clinical research center
 Time, distance, travel expenses
 - Participant burden
 - Number of studies
 - Lifetime research participant?
 - Relevance of research to participant concerns
Other Critical Collaborations

- Community Based Organizations
 - Can play principal role as advocate for sickle cell
 - Research funding
 - Clinical care funding
 - Can legally advocate for sickle cell support at local, state, and federal level without compromising University legislative agendas
 - Can be major partner in participant recruitment for clinical trials and community support
Florida’s Challenges

- One of largest populations of children and adults with SCD in the United States
- CMS does excellent job with follow-up near pediatric centers, but some inevitably still don’t receive follow-up and standard of care
- Pediatric centers see more than 4000 children with SCD
- Adult care infrastructure is minimal
- Florida SCD mortality rate has historically been greater than national average
Florida’s Opportunities

- Florida pediatric centers have history of collaboration (e.g., FAPTP)
- Florida has the opportunity to be the “St. Jude or Dana Farber” of sickle cell disease
 - Lead consortium for Phase I and Phase II trials and innovation
 - Anchor for national clinical trials network
- Florida can improve implementation of clinical standards of care-Center of Excellence
What Do We Need to Do?

- Make clinical trials available
- Education the sickle cell community about the role clinical trials can play in improving how we treat and ultimately cure sickle cell disease
- Make it possible for those interested to participate
- Inform the community about what we learn
Final Consideration

- Clinical trials in childhood cancer have changed survival from 40% to more than 80%. Why can’t we do have the same impact for Sickle Cell Disease?
Contributors and Colleagues

- University of Miami Sickle Cell Center
 - Charles H. Pegelow, M.D. (deceased), Astrid Mack, Ph.D., Ofelia Alvarez, M.D., Tom Harrington, M.D., Don Temple, M.D., Maria Goldman, Psy.D., Stuart Toledano, M.D., Julio Barredo, M.D., Wisvline LaBrousse, Ph.D., Tally Hustace, Elizabeth Willen, Ph.D., Rita Bhatia, M.D. Ellen White, ARNP, Noeline Lewis, ARNP, Winsome Thompson, Ph.D., Armande Gil, Ph.D.

- Cooperative Study of Sickle Cell Disease (CSSCD)
 - Robert Thompson, Jr., Ph.D., Marilyn Gaston, M.D., Tom Kinney, M.D., Clarise Reid, M.D., Dianne Gallagher, Ph.D., Carol Link, Ph.D., Don Brambilla, Ph.D.

- Baby HUG
 - Win Wang, Ph.D., Scott Miller, M.D., Rene Rees, David Elkin, Ph.D., Penny Glass, Ph.D., Clark Brown, M.D.

- NHLBI Sickle Cell Disease Advisory Committee

- Comprehensive Sickle Cell Centers Phase I & II Clinical Trials Consortium
 - Elliott Vichinsky, M.D., Jeffrey Gold, Ph.D., Mike Wiener, M.D., Randall Rule, M.D., Allison Muma, Jamie Spencer, Cathie Snyder, Susan Lief, Ph.D., Karen Kesler, Ph.D., Barry Eggleston, Ph.D.; Lynne Neumayr, M.D., Clinton Joyner, M.D.

- BMT & Mixed Chimerism
 - Mark Walters, M.D.

- Multi-Center Study of Hydroxyurea (MSH)
 - Martin Steinberg, M.D., Wally Smith, M.D., Bruce Barton, M.D., Adrienne Brandon

- SWITCH
 - Russell Ware, M.D., Melanie Bonner, Ph.D.

- NINDS Start Trial
 - James Eckman, M.D., Ronald Brown, Ph.D.

- Many post-doctoral fellows and graduate students